Nematode endoparasites do not codiversify with their stick insect hosts
نویسندگان
چکیده
Host-parasite coevolution stems from reciprocal selection on host resistance and parasite infectivity, and can generate some of the strongest selective pressures known in nature. It is widely seen as a major driver of diversification, the most extreme case being parallel speciation in hosts and their associated parasites. Here, we report on endoparasitic nematodes, most likely members of the mermithid family, infecting different Timema stick insect species throughout California. The nematodes develop in the hemolymph of their insect host and kill it upon emergence, completely impeding host reproduction. Given the direct exposure of the endoparasites to the host's immune system in the hemolymph, and the consequences of infection on host fitness, we predicted that divergence among hosts may drive parallel divergence in the endoparasites. Our phylogenetic analyses suggested the presence of two differentiated endoparasite lineages. However, independently of whether the two lineages were considered separately or jointly, we found a complete lack of codivergence between the endoparasitic nematodes and their hosts in spite of extensive genetic variation among hosts and among parasites. Instead, there was strong isolation by distance among the endoparasitic nematodes, indicating that geography plays a more important role than host-related adaptations in driving parasite diversification in this system. The accumulating evidence for lack of codiversification between parasites and their hosts at macroevolutionary scales contrasts with the overwhelming evidence for coevolution within populations, and calls for studies linking micro- versus macroevolutionary dynamics in host-parasite interactions.
منابع مشابه
Horizontal transmission of Wolbachia by strepsipteran endoparasites? A response to Noda et al., 2001.
The noncongruence between molecular phylogenies of the endosymbiont bacteria, Wolbachia and their hosts imply frequent horizontal transfer between species (Werren et al. 1995). A suggested mechanism for this is infection by macro-parasites, notably parasitoids. A recent report in Molecular Ecology (Noda et al. 2001) noted that two planthopper species shared Wolbachia strains with those recovere...
متن کاملExamination of Xenorhabdus nematophila lipases in pathogenic and mutualistic host interactions reveals a role for xlpA in nematode progeny production.
Xenorhabdus nematophila is a gammaproteobacterium and broad-host-range insect pathogen. It is also a symbiont of Steinernema carpocapsae, the nematode vector that transports the bacterium between insect hosts. X. nematophila produces several secreted enzymes, including hemolysins, lipases, and proteases, which are thought to contribute to virulence or nutrient acquisition for the bacterium and ...
متن کاملMercury in parasitic nematodes and trematodes and their double-crested cormorant hosts: bioaccumulation in the face of sequestration by nematodes.
Endoparasites can alter their host's heavy metal concentrations by sequestering metals in their own tissues. Contracaecum spp. (a nematode), but not Drepanocephalus spathans (a trematode), were bioaccumulating mercury to concentrations 1.5 times above cormorant hosts. Nematodes did not have significantly greater stable nitrogen isotope values (δ(15)N) than their hosts, which is contradictory to...
متن کاملSeasonally limited host supply generates microparasite population cycles.
Cycles in biological populations have been shown to arise from enemy-victim systems, delayed density dependence, and maternal effects. In an initial effort to model the year-to-year dynamics of natural populations of entomopathogenic nematodes and their insect hosts, we find that a simple, nonlinear, mechanistic model produces large amplitude, period two population cycles. The cycles are genera...
متن کاملRole of symbiotic and non-symbiotic bacteria in carbon dioxide production from hosts infected with Steinernema riobrave.
Entomopathogenic nematodes of the family Steinernematidae and their mutualistic bacteria (Xenorhabdus spp.) are lethal endoparasites of insects. We hypothesized that growth of the nematode's mutualistic bacteria in the insect host may contribute to the production of cues used by the infective juveniles (IJs) in responding to potential hosts for infection. Specifically, we tested if patterns of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016